Proper affine actions: a sufficient criterion

نویسندگان

چکیده

For a semisimple real Lie group G with representation \(\rho \) on finite-dimensional vector space V, we give sufficient criterion for existence of affine transformations V whose linear part is Zariski-dense in (G)\) and that free, nonabelian acts properly discontinuously V. This new more general than the one given Smilga (Groups Geom Dyn 12(2):449–528, 2018), insofar as it also deals “swinging” representations. When split, almost all irreducible representations have 0 weight satisfy this criterion. We conjecture actually necessary

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Criterion for proper actions on homogeneous spaces of reductive groups

Let M be a manifold, on which a real reductive Lie group G acts transitively. The action of a discrete subgroup Γ on M is not always properly discontinuous. In this paper, we give a criterion for properly discontinuous actions, which generalizes our previous work [6] for an analogous problem in the continuous setting. Furthermore, we introduce the discontinuous dual t(H:G) of a subset H of G , ...

متن کامل

Proper affine actions and geodesic flows of hyperbolic surfaces

Let Γ0 ⊂ O(2, 1) be a Schottky group, and let Σ = H2/Γ0 be the corresponding hyperbolic surface. Let C(Σ) denote the space of geodesic currents on Σ. The cohomology group H1(Γ0, V) parametrizes equivalence classes of affine deformations Γu of Γ0 acting on an irreducible representation V of O(2, 1). We define a continuous biaffine map C(Σ)×H1(Γ0, V) Ψ −→ R which is linear on the vector space H1(...

متن کامل

Proper actions and proper invariant metrics

We show that if a locally compact group G acts properly on a locally compact σ-compact space X, then there is a family of G-invariant proper continuous finite-valued pseudometrics which induces the topology of X. If X is, furthermore, metrizable, then G acts properly on X if and only if there exists a G-invariant proper compatible metric on X.

متن کامل

A Sufficient Criterion for Homotopy Cartesianess

In an abelian category, a commutative quadrangle is called bicartesian if its diagonal sequence is short exact, i.e. if it is a pullback and a pushout. A commutative quadrangle is bicartesian if and only if we get induced isomophisms on the horizontal kernels and on the horizontal cokernels. In a triangulated category in the sense of Verdier [3, Def. 1-1], a commutative quadrangle is called hom...

متن کامل

Hyperbolic groups admit proper affine isometric actions on l p - spaces Guoliang

Let X be a Banach space and Γ be a countable discrete group. An affine and isometric action α of Γ on X is said to be proper if limg→∞‖α(g)ξ‖ = ∞ for every ξ ∈ X. If Γ admits a proper isometric affine action on Hilbert space, then Γ is said to be of Haagerup property [9] or a-T-menable [12]. Bekka, Cherix and Valette proved that an amenable group admits a proper affine isometric action on Hilbe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Annalen

سال: 2021

ISSN: ['1432-1807', '0025-5831']

DOI: https://doi.org/10.1007/s00208-020-02100-7